\(\int \frac {a+b \sec ^{-1}(c x)}{x (d+e x^2)} \, dx\) [94]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 459 \[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d} \]

[Out]

1/2*I*(a+b*arcsec(c*x))^2/b/d-1/2*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(
c^2*d+e)^(1/2)))/d-1/2*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1
/2)))/d-1/2*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d-1/2
*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d+1/2*I*b*polylo
g(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d+1/2*I*b*polylog(2,c*(1/c/x+I*(1-1
/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/d+1/2*I*b*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-
d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/d+1/2*I*b*polylog(2,c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c
^2*d+e)^(1/2)))/d

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 459, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5348, 4818, 4826, 4616, 2221, 2317, 2438} \[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 d}+\frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 d} \]

[In]

Int[(a + b*ArcSec[c*x])/(x*(d + e*x^2)),x]

[Out]

((I/2)*(a + b*ArcSec[c*x])^2)/(b*d) - ((a + b*ArcSec[c*x])*Log[1 - (c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] - S
qrt[c^2*d + e])])/(2*d) - ((a + b*ArcSec[c*x])*Log[1 + (c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] - Sqrt[c^2*d +
e])])/(2*d) - ((a + b*ArcSec[c*x])*Log[1 - (c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*d)
- ((a + b*ArcSec[c*x])*Log[1 + (c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*d) + ((I/2)*b*P
olyLog[2, -((c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/d + ((I/2)*b*PolyLog[2, (c*Sqrt[-d]*
E^(I*ArcSec[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/d + ((I/2)*b*PolyLog[2, -((c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqr
t[e] + Sqrt[c^2*d + e]))])/d + ((I/2)*b*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcSec[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])]
)/d

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4616

Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)])/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :>
Simp[I*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (-Dist[I, Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2, 2
] + b*E^(I*(c + d*x)))), x], x] - Dist[I, Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] + b*E^(I*(c +
 d*x)))), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 4818

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcCos[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 4826

Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> -Subst[Int[(a + b*x)^n*(Sin[x]/
(c*d + e*Cos[x])), x], x, ArcCos[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5348

Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {x \left (a+b \arccos \left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right ) \\ & = -\text {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \arccos \left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \arccos \left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {\text {Subst}\left (\int \frac {a+b \arccos \left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {-d}}+\frac {\text {Subst}\left (\int \frac {a+b \arccos \left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {-d}} \\ & = \frac {\text {Subst}\left (\int \frac {(a+b x) \sin (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \cos (x)} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}}-\frac {\text {Subst}\left (\int \frac {(a+b x) \sin (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \cos (x)} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}} \\ & = \frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}-\frac {i \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}-\sqrt {-d} e^{i x}} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}}-\frac {i \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}-\sqrt {-d} e^{i x}} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}}+\frac {i \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}+\sqrt {-d} e^{i x}} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}}+\frac {i \text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}+\sqrt {-d} e^{i x}} \, dx,x,\sec ^{-1}(c x)\right )}{2 \sqrt {-d}} \\ & = \frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\sec ^{-1}(c x)\right )}{2 d}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\sec ^{-1}(c x)\right )}{2 d}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\sec ^{-1}(c x)\right )}{2 d}+\frac {b \text {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\sec ^{-1}(c x)\right )}{2 d} \\ & = \frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \sec ^{-1}(c x)}\right )}{2 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \sec ^{-1}(c x)}\right )}{2 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \sec ^{-1}(c x)}\right )}{2 d}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \sec ^{-1}(c x)}\right )}{2 d} \\ & = \frac {i \left (a+b \sec ^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d}+\frac {i b \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 876, normalized size of antiderivative = 1.91 \[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\frac {i \left (b \sec ^{-1}(c x)^2-4 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )-4 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \tan \left (\frac {1}{2} \sec ^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+i b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+i b \sec ^{-1}(c x) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+i b \sec ^{-1}(c x) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+i b \sec ^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i a \log (x)+i a \log \left (d+e x^2\right )+b \operatorname {PolyLog}\left (2,-\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \operatorname {PolyLog}\left (2,\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \operatorname {PolyLog}\left (2,-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )+b \operatorname {PolyLog}\left (2,\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{i \sec ^{-1}(c x)}}{c \sqrt {d}}\right )\right )}{2 d} \]

[In]

Integrate[(a + b*ArcSec[c*x])/(x*(d + e*x^2)),x]

[Out]

((I/2)*(b*ArcSec[c*x]^2 - 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt
[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] - 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c
*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + I*b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d +
e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + (2*I)*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sq
rt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + I*b*ArcSec[c*x]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2*d +
 e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + (2*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-
Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + I*b*ArcSec[c*x]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d
+ e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (2*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(
Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + I*b*ArcSec[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d
+ e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (2*I)*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(
Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - (2*I)*a*Log[x] + I*a*Log[d + e*x^2] + b*PolyLog[2
, ((-I)*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + b*PolyLog[2, (I*(-Sqrt[e] + Sqrt[c^2*d
+ e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + b*PolyLog[2, ((-I)*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*S
qrt[d])] + b*PolyLog[2, (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])]))/d

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.33 (sec) , antiderivative size = 1970, normalized size of antiderivative = 4.29

method result size
parts \(\text {Expression too large to display}\) \(1970\)
derivativedivides \(\text {Expression too large to display}\) \(1997\)
default \(\text {Expression too large to display}\) \(1997\)

[In]

int((a+b*arcsec(c*x))/x/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

a/d*ln(x)-1/2*a/d*ln(e*x^2+d)+b*(-1/2*I*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*e
*polylog(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))/d^3/(c^2*d+e)/c^4+1/2*I/d
*sum((_R1^2*c^2*d+2*c^2*d+4*e)/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1
)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))-1/4*I*(e*(c^2
*d+e))^(1/2)/e/(c^2*d+e)*arcsec(c*x)^2*c^2+1/2*I*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*polylog(2,d*c^2*(1/c/x+I*(1
-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))*e/d^3/c^4-1/4*I*(e*(c^2*d+e))^(1/2)/d/(c^2*d+e)*polyl
og(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e))+1/4*(-(e*(c^2*d+e))^(1/2)*c^2*d
+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)/e/(c^2*d+e)/d*ln(1-d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(
e*(c^2*d+e))^(1/2)-2*e))*arcsec(c*x)+1/4*(e*(c^2*d+e))^(1/2)/e/(c^2*d+e)*c^2*arcsec(c*x)*ln(1-d*c^2*(1/c/x+I*(
1-1/c^2/x^2)^(1/2))^2/(-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e))+1/2*I*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*arcsec(c*x)^
2/c^2/d^2+1/4*I*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*polylog(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e
*(c^2*d+e))^(1/2)-2*e))/c^2/d^2+(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)/d^3*e/(c^
2*d+e)/c^4*ln(1-d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))*arcsec(c*x)-1/2*I*(-
(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*polylog(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2
))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))/(c^2*d+e)/c^2/d^2-1/8*I*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c
^2*d+e))^(1/2)*e+2*e^2)*polylog(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))/d/
e/(c^2*d+e)-1/2*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)/c^2/d^2*ln(1-d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2
*(e*(c^2*d+e))^(1/2)-2*e))*arcsec(c*x)+1/2*(e*(c^2*d+e))^(1/2)/d/(c^2*d+e)*arcsec(c*x)*ln(1-d*c^2*(1/c/x+I*(1-
1/c^2/x^2)^(1/2))^2/(-c^2*d+2*(e*(c^2*d+e))^(1/2)-2*e))-I*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e)
)^(1/2)*e+2*e^2)*arcsec(c*x)^2/(c^2*d+e)/c^2/d^2+I*(c^2*d-2*(e*(c^2*d+e))^(1/2)+2*e)*arcsec(c*x)^2*e/d^3/c^4-I
*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*e*arcsec(c*x)^2/d^3/(c^2*d+e)/c^4+1/2*I/
d*arcsec(c*x)^2-1/8*I*(e*(c^2*d+e))^(1/2)/e/(c^2*d+e)*polylog(2,d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d+
2*(e*(c^2*d+e))^(1/2)-2*e))*c^2-1/4*I*(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)*arc
sec(c*x)^2/d/e/(c^2*d+e)+(-(e*(c^2*d+e))^(1/2)*c^2*d+2*c^2*d*e-2*(e*(c^2*d+e))^(1/2)*e+2*e^2)/(c^2*d+e)/c^2/d^
2*ln(1-d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))*arcsec(c*x)-(c^2*d-2*(e*(c^2*
d+e))^(1/2)+2*e)/d^3/c^4*e*ln(1-d*c^2*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2/(-c^2*d-2*(e*(c^2*d+e))^(1/2)-2*e))*arcs
ec(c*x)-1/2*I*(e*(c^2*d+e))^(1/2)/d/(c^2*d+e)*arcsec(c*x)^2)

Fricas [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcsec}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x} \,d x } \]

[In]

integrate((a+b*arcsec(c*x))/x/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arcsec(c*x) + a)/(e*x^3 + d*x), x)

Sympy [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\int \frac {a + b \operatorname {asec}{\left (c x \right )}}{x \left (d + e x^{2}\right )}\, dx \]

[In]

integrate((a+b*asec(c*x))/x/(e*x**2+d),x)

[Out]

Integral((a + b*asec(c*x))/(x*(d + e*x**2)), x)

Maxima [F]

\[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\int { \frac {b \operatorname {arcsec}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x} \,d x } \]

[In]

integrate((a+b*arcsec(c*x))/x/(e*x^2+d),x, algorithm="maxima")

[Out]

-1/2*a*(log(e*x^2 + d)/d - 2*log(x)/d) + b*integrate(arctan(sqrt(c*x + 1)*sqrt(c*x - 1))/(e*x^3 + d*x), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate((a+b*arcsec(c*x))/x/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> an error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \sec ^{-1}(c x)}{x \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )}{x\,\left (e\,x^2+d\right )} \,d x \]

[In]

int((a + b*acos(1/(c*x)))/(x*(d + e*x^2)),x)

[Out]

int((a + b*acos(1/(c*x)))/(x*(d + e*x^2)), x)